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A foundation is given for the formula for the limit moment for a certain class 
of anisotropic inhomogeneous rigid-plastic media in the problem of torsionof 

a cylinder with an arbitrary cross section. A formula is derived for the rate of 

warping of the cross section, and a uniqueness theorem is proved in the case of 
a simply-connected cross section. 

1, Formulation of the problem. A rigid-plastic medium [l] is determined 
by its dissipative potential cp (5, eij) [2], the positive, semi-additive, positively-homo- 
geneous first degree function eij which is independent of the trace of the matrix eij- 

Let external forces with the volume density f,, and surface density f, act on a medi- 
um in a volume o . One of the most important quantities in the theory of a rigid-plas- 
tic medium is the limit load coefficient C* for a given system of external forces, de- 

fined by the formula 
1 

- = sup (1.1) 
C* 

[(~f&w- 1 f&Q) x 
u 0 8w 

is -1 
Cp (X, eij (LX)) Ci%O )I I eij = + 

0 ( 
dU. _+L+au, 
dXj f3Xi ) 

where do is the boundary of o. The vector-functions u (x) in (1.1) form a linear 
space, are solenoidal, and satisfy definite boundary conditions. 

Let rp” (x, Oij) denote the polar for cp (2, efj) [3],i.e. a function possessing the 
properties: rp” (z, aij) is a positive, semi-additive, positively homogeneous function 

of the first degree in oij lthe matrices (Tij are assumed to have zero trace), where for 

all Gijr eij 

(1.2) 

For any e = (eij) there exist oij (e}, xoij2 (e) > 0, such that the equality holds in 

(1.2). ij 

It can be shown that the yield condition for a rigid-plastic medium is given by the 

equality ‘p” (2, aij) = 1. 

Formulation of the problem of torsion of a rigid-plastic bar is analogous to the corre- 

sponding formulation of the problem for a linearly elastic bar [4f and consists of the fol- 
lowing. Let 0 be a cylinder 

w = D x f0, HI, (~1, IL;L) E D, 0 < x3 4 H 

The boundary conditions on u (5) are assumed to have the form: 

u(xr, s%z;, O)=(% 0, g,( x1, x%2)), ~(51, ~22, @=(--a+ ax1 g, (~1, 52)) 

where g,, gs are arbitrary functions and a is an arbitrary real number. The external 

forces act only on the endface 5s = H and f, = (-x2, x1, 0). 
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Let c* be the limit load coefficient in the problem of torsion (the limit moment). 
Let [oij] be a system of functions in which o 13, a,, are arbitrary, while the remaining 

Uij equal zero. Let h (zr, x2) be a smooth functionh j an ^--- const.. Let IGijI (h) 
be a system of functions [oii] in which or5 := 33, / &zp, oaS :-: -83, / (3x,. Thenif 

‘pO (2, [OijI (A)) < 1, then C* > Al / Aa 

Al = - SC ah 

D 
.z’l yjg -I- &g-) dp, A-2 = 1 (xx2 -I- r2)dp 

n 

We consider the vector functions U ==: (-~2~s, zrza, _U (zr, ~a)). The U eviden- 
tly enter into the class of admissible u (~1. Setting 2~s = & / &, - 5, Ze,, = 

du / dss $ a, and assuming that gp (x, eij) = cp (rr, x2, eij), we find 

2, Calculatfon of the limit moment. We assume that cp” (51, Gt]Oij]) 
is polar for cp (x1, z2, ]eij]). This condition will be satisfied if 

Let e = (e,, e,) from R”. We set 9 (z,, x2, e) = cp (s), us, fefj]), where el = 

2ers, es II 2e,,. Then 4” (zl, x2, a) = cp” (xl, 5a, [aif]), *where cr, --- Urs, 0, = 

(J23(cP0 (zl, x2, 0) is polar for $'(q, x2, e)), Let us rewrite (1.3) in the form 

sup Al < cg As < inf 1 9 (xx, x2, W - to) dp 
(2.U 

hEA *D 

Gh= ( &, +) 

Let h denote the set li, (.x1, z-s), for which 

h 18~ = const, vrai max $’ (x1, x2, Gh) & 1 

Theorem 1. If D is a bounded domain with a sufficiently smooth boundary, 
$7 (x1, X2, e) is a sufficiently smooth function of its arguments for / e [ > 0 and 
t (q, x2) is a sufficiently smooth vector-functions then 

inf s 
u D 

9 (XIV X2, VU - t) dp = sup - 1 tGh + 
x&r u 

(2.2) 

Proof. Let @E (g) be an infinitely differentiable convex function of 5, lj, >, 0, 
where 0, (5) -= E for 5 > E, GE’(g) < 1, rD,@) (0) := 0, k =: 1, 2, ._.. We 
set qC (x1, x2, e) = cf), (9 fq, xz, e)). Then 

(2.3) 
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1, (4 = \ l+- (W - t)” + 4c (x17 22, vu - t,] dp 

G 

Let & minimize rE (u). This is a function [S, 61 from C, (B) and it satisfies the re- 
lationships 

div QL = 0, Qs I aD = 0 (2.4) 
QE = F (Vu, - t) -I- v,qE (x1, x2, Vu, - t), n is normal to i3D 

It follows from (2.4) that 
(CC = Ghe (2.5) 

We find from the second equality in (2.4) and (2.5) the h, 1 0~ = const. Moreover 

(2.6) 

9” (x17 x29 E (vu, - t)) + 1 > $” (21, 22, GA,) 

By virtue of (2.6). the h, are uniformly bounded with respect to E in W,l (‘) and an 

h,, exists from IV21 (D) (weak limit point A,) such that 

ha loD = const, 1 dp> 1 ~~O(~~r~a,GUla~~~ D’CD 

D’ D’ 

Therebre, vrai max $,” (xi, x2, GA,,)- & 1. 
We find from (2.5) and (2.3) 

s (Vu, - t) GA, dp + E mes D > IO (ue), IO (v) = 1, (v) Ir=~ 
D 

Hence, the inequalitv 

- 1 tG& dp > inf \ 11, (~1, ~2, Vu - t) dp (2.7) 

follows. 
D u D 

The assertion of Theorem 1 follows from the inequalities (2.1) and (2.7). 
Theorem 1 admits of strengthening.Namely, if D is a finitely connected domain with 

piecewise-smooth boundary, and $ (Xi, X2, e) is a continuous function of its arguments, 

then (2.2) is valid, and hence K can be replaced by A. 
Let us note that c* yields the lower bound of the limit moment in the problem ofcon- 

strained torsion, i. e. for boundary conditions of the form 

u (zr, 52, 0) = (0, 0, O), U (21, 52, H) = (-ax21 G=,, 0) 

3. Formulas for the warping rate of the cylfnder trantverte 
section. We obtain a formula for uO (xl, za), which minimizes I, (u). Itisevident 
that 

i:f 10 (v) > ‘p”f % [Q (x1, x2, P - t) - PGLJI dp (3.1) 

where ho (the stress function [l]) satisfies the following conditions almost everywhere 

in D : h, 1,311 = const, *” (21, x2, GA,) = 1; h, (q, x2) is a continuous function. 

MoreoVer, certain conditions will stilI be imposed on &, . 
The values of p for which the integrand in the right side of (3.1) reaches its leastva- 

lue are determined from the system 

VP 4 (519 x2, p - t) = G& 
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Therefore, if a function u(, satisfying the overdefined system of equations 

v,+ (% x,, Au, - t) y-7 Gho (3.2) 

is found~then us (zr, zs) minimizes I,, (v). 
Let us assume that ?p (zr, ~a, e), I#” (q, x2, e) be smooth functions of their argu- 

ments for 1 e [ > 0. It hence tallows that for fixed x1, x2 there exists a unique vec- 

tor e (q) for any q such that V, 4 (xl7 xz, e (q)) I] q (parallel). 
Lemma 1. The relationship $ (x1, ~a, e) 4” (zr, x.2? q) ::= eq is satisfied if and 

only if V, * (x1, x2, e) \\ q. 
The assertion of the lemma results from the geometric properties of the scalar product. 

Corollary l.The relationships V7, ‘Ic, (x1, x2, e) 1) g and V, $j” (x1, x2,. q) 11 e are 
equivalent. 

Corollary 2. For any 

e( [eI>O):e=g( %t %, eJ V, 9,” (XI, $2, 41 Is = oe@ fri. SZ, e) 

Lemma 2. The systemsof equations .\1>’ (zr, ~a, q) V,$ (x1, x2, e) = q, I$ (x1 
-5 e) VPS’(J~~ x2, q) = e (q is a given vector) are equivalent and solvable uniquely 

to the accuracy of a factor. 
Proof. The equivalence of the system results from Corollary 2, and their uniquesol- 

vability follows from the properties of 9 (x1, us, e). 
Thus, by virtue of Lemma 2 the system (3.2) is equivalent to the system 

vu, - t := 9 (X1, 52, vu, - f) v, ,V (51, x2,0) (3.3) 

Let us first consider a doubly-connected domain D bounded by piecewise-smoothcon- 
tours rr, r, (I’, lies inside I’,>. Simply connected domains when I’s shrinks to a point 

are a particular case of such domains. Let A., be a smooth function in L), except perhaps 
for a finite number of smooth curves, and 

A, > 0, h, lr, = 0, ho II-% = cod, 9,” (x1, x2, G&J = 1 

We call a set of these smooth curves and rs a set of singularities r. 
Let us consider a field of directions Y and‘ D 

Let 1 be the unit tangent vector to the level line aa = c which gives the counter- 
clockwise bypass of the domain h, > c , Since (Vh,, %) > 0 in D \ l?, then the le- 
vel lines A0 and the integral curves of the field v form a regular network of Lines in 
D \ I' . Let s be the arclength on I’, measured from a certain point on I’, in thedi- 
rection 1, 0 & s & L. We fix a point s on l?r and we introduce a parameter n on 

the integral curve of the field v passing through the point. Namely, IL = ho (x1, x2) 

will correspond to the point (zr , x2) on the integral curve. It follows from the condi- 
tion (VA,, y) > 0 that different values of n, 0 & YL & n (s) corresponl to different 
points of the integral curve. With respect to ha it is assumed that an integral curve of 
the field v issuing from rr passes through each point D \ i’? . Therefore we have the 

system 
(3.4 

which governs the integral trajectory of the field v for a fixed s and governs the level 
line A0 parametrized by s for fixed n, when s is from the domain of definition (3.4), 
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Let the domain of variation of s for fixed n consist of a finite number of segments 
Sin& S&Sr+1, i = 1, . . . . r (n), where sin < s ( s;+i yields a mapping in D\ r 
or in r, (sin, n) is a point of r. Let us introduce natural parametrization of a piece 
of level line &, = n in each interval sin < s < ~~7~ : u =I- u (s, n), ija / as > 0. 

Thus,(3.4) determines the curvilinear coordinates in D and 

a a a 1 a -=(Tpbo,v)~, -=-_ 
lh ,a1 au /as as 

It can be shown that the system (3.3) is equivalent to the relationships 

au, I a2 > (4 1) au, / av = (t, v) 

from which it follows that 

u” b9 n, = c T&y s, p) v (s, p) 
t(SvP)v(S*~) d/4$-q(s), q(L)-q(O)<0 (3.5) 

0 

n a 

Q’ (s) > g t1 - \ 

0’ 

as $$ dp = A (s, n) (3.6) 

8A i3a B 
-casx+ty, B=j+$v 

Lemma 3. The following equalities are valid: 

- -$) mov 
Proof. The first assertion of the lemma follows from the equalities 

(3.7) 

The second assertion is proved by passing to the coordinates (z,, 52) in the expression 

for B in (3.6). 
Let us assume that &,/ax, - dt,ldx, > 0 in D (3.8) 

Condition (3.8) is satisfied for to in (2.1). It follows from Lemma 3 and from the con- 
dition (3.8) that (3.6) is equivalent to the inequality 

q’ (s) > A (s, n N) (3.9) 

Let us set q (s) = Q (s) + p (s), where p’ (s) > 0 and Q’ (s) equals the right side 

(3.10) 
in (3.9). Then 

u. (s, n) = P, (s, n) + P2 (4 + P (4 

PI (s, n) = - s vt&!!:‘,~;s~~, dp 

Pa (s) = i t (a, n ,a;, ( aa $f; n, 

n”(a) v (a$ n ta)) 
VI., (a, n (4) v (a, n (a)) 

da 
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We note that 
Pi(&n)= 1 t(T)m(z)dt, m(z)= ---Y(Z) 

Cl 

where C, is a piece of the integral cuNe of the field Y from the point (S, n) to (s, 
n (s)), 7 is the arclength along this curve, The curve r is given by the equation x (s, 

n (s)) = x. The single tangent vector m to I? has the form 

m = ($ + $-n’ (s)) / 1% + $- n’ (s) 1 

Using (3.7), we obtain 
Pa (s) = 1 t (7) m(r) d< 

C1 

where C, is the piece of r from (0, n (0)) to (s, n (s)), and IY is the arclength 

along C,. 
If follows from condition (3.5) that 

P (L) - P (0) < - 1 t (r) m (r) dr 
r 

where z is the arclength on r which grows in the direction m. 
Let t (r) satisfy the condition 2 

s t(z)m(T)dz<O 
r 

(3.11) 

Condition (3.11) is satisfied, for example, for the t, in (2.1). Let us formulate the 
results obtained in the form of a theorem. 

Theorem 2. Let 
uo(s,n)= \ t(2.)m(r)dr+P(s) (3.12) 

I: 

where C consists of C, and C,, p (s) is a nondecreasing function, and 

p (0 - p (0) < - 1 t (a) m 6) dr 
1’ 

Then u,, (s, n) minimizes 1, (u). 
Corollary 3. If D is a simply-connected domain, then p (s) =const and u,,(s, 

n) is a continuous, piecewise-smooth function. 

Corollary 4. (Uniqueness theorem). Let ‘p (Xi, X2, eij) > Cp (X1, Zz, [eii]) 

a 

for 2 eij2 > 0 and ?# (a+, zs, e) a strictly convex function of e. Then the torsion 
i, j=l 

problem in a simply connected domain o has a unique solution in the class of vector 
functions with integrable derivatives. 

Proof. The following inequalities are valid : 

(3.13) 
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u (% ?A? 19 = (--H+ Hq, u3 (q, 53, Ii)) 

The equality sign holds in the relationships (3.13) if and only if ell = e12 - et2 = 0 

and e13, es3 are proportional to the same function of ,sa.Uniqueness to the accuracy 
of a constant component of the function ~~~z~g 1, (0) follows from the unique 
solvability of the system (3.2). Therefore, if u (a$ is the solution of the torsion prob- 
lem in the simply-connected domain CO, then it follows from the first inequalityin(3,13) 

and the incompressibility condition that 

(3.14) 

It follows from the second inequality in (3.13) that C (33) = const if the function 

U (xi, ~a) in (3.14) is not a constant. Therefore, c (x3) = const if the domain D 

is not a circle. If D is a circle, then u3 = u (OCR, za) = const and (3.14) is a solu- 
tion of the torsion problem for any monotonic function with c (CC,), c (0) = 0. 

Let us turn to an analysis of multiconnected domains D. We note that (3.12) con- 
tains even discontinuous functions if p (s) is a discontinuous function (these discontinu- 
ous functions can be understood as the limits of smooth functions). Let us examine an 
arbitrary doubly-connected domain D bounded by the contours I’r, rz (r, lieswith- 
in I’,). Let h, (x1, ~~2)’ be a continuous Fnction in D, such that & 1 rl = 0, 

h, ] r, = const and q” (xi, x2, GA,) = 1 almost everywhere in D. Let us consider 

the level line of rr’ : h, =’ c, such that the contour re is within rr’ and rr’, ra 

have common points. It is assumed that the unction ha has the above-mentioned sin- 
gularity structure in the domain I)’ included between r% and I’r’,and in the simply- 
connected domain D’ whose boundary consists of ri’, l’,.The rate of warping is found 
as follows, The function uO (s, n) is first constructed in D” by means of (3.12). In this 

case p (s)=const. Later uO (s, n) is determined by (3.12) in D’, and p (8) is here 
selected so that UC (a, n) is continuous almost everywhere on T’1 . 

For instance,.let f) ‘be the domain between the imbedded nonconcen~ic circles rC,, 

Kz, K, 3 & and V (xi, 4, G&J = 1 Vh, 1. Then D’ is a concentric ring and 17” is a 
simply-connected horseshoe-like domain bounded by two tangent circles. In this case 
u,, (s, n) is determined uniquely and is a discontinuous function with a discontinuity go- 

ing along the shortest segment connectingthe boundaries K1 and K,, The magnitude 
of the discontinuity is determined in terms of the integral of the vector field t along 

the line of singularities in the horseshoe-shaped domain 11” . If t = to, Ii is the ra- 
dius of Kz, r the radius of Kz and p the spacing between the boundaries K, and K,, 
then the magnitude of the jump in the warping rate is 

x (R - P + 4 v(R - PI r 

An analogous construction permits finding the rate of warping in multiconnected do- 
mains D. 

It has been noted in Sect. 2 that C* yields the lower bound for the limit moment in 
the constrained torsion problem. By using the expression found in Sect. 3 for the warp- 
ing rate, it can beshown that for a simply-connected domain Q , the limit moment in the 
constrained torsion problem differs from c* by the quantity P / H, where H is the 
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cylinder height, and the quantity P is estimated in terms of the function ua (s, n) de- 
fined in (3.12). 

4, C@B#truetlOn of the 8ttccr funtttfcrn, The function h, was introduced 
in Sects. 2 and 3. Methods of constructing the function &, will be given below. Let us 

first consider the case of a simply-connected domain D. 
a) Let 9” (~iza, e) = 1 e 1. Then the function h, (xi7 ~a) can be foundas fol- 

lows. We construct a family of circular cones with semi-apex angle n j 4 with verti- 
ces at dD and axes parallel to 01~s. Then x3 = il, (or, x9:2) is the envelope of this 
family of cones located above D. When q)” = j e j, the problem of constructing h, 
and the properties of. ho when 3D is a Jordan curve have been examined in [‘I]. If 
ql” (xi, rr,, e) = m (e), then the scheme to construct &is the same,only circular 

cones must be replaced by Monge cones [Xl. 

tion a (xi, zs) be constant on the level lines of the function li,’ (zr, x,), constructed 

in D for $* (;~l, us, i?) = j e /_ In this case ha (~1, 3%) has the same level lines as 

&land a (xi, X~) a& / dn =1: 1, where i3 / 872 denotes differentiation in a direction 
orthogonal to the level lines &,I. The warping rate in this case is evidently exactly the 
same as in case (a) 193 a~thougb the quantity c* may be different, 

The class of functions a (x1, ~a) can be expanaea somewhat by taking into account 

that the conformal mapping & _ ~~ t5i, ~a), i = 1,2 transfers &, (xi, xs) into the 
function 1~s (gi, Es> which satisties the equation a]V, El]Vg p. 1 = 1 almost every- 

where in De (& is the image of D under the mapping 5). 

c) Let $?” (xi, zs, e) be a function of general form. Let us construct a family of 
Monge cones at the points gL> and let us take their envelope. We consider a levelline 
of height E on this envelope and we construct a second family of Monge cones withver- 
tices at points of this line at a height e above the plane D. Then the level line at the 
height ZF, is considered the envelope of the second family of Monge cones, A third fa- 
mily of Monge cones with vertices at the height 2~ is constructed at points of this level 

line, etc. Let us define 3Lf (xi, ~a) as the envelope of the first family of Monge cones 
in the subdomain L), where 0 & 3Lc & I, in the subdomain D where E & h, & 2% 

the function h, (x1, x2) is the envelope of the second family of Monge cones, etc. As 
e --f 0 the functions A, converge to the required function h,. 

In the case of multiconnected domains 2, (we consider the case of a doubly-co~ec- 

ted domain), the function ho is determined as follows, We examine the simply-connec- 

ted domain f2 bounded by the contour r,, and we construct the stress function ha1 
therein. We draw the level line r: 3L,l = c such that rs is within r and r, I’, 
have common points. Then, the stress function h,” (xx9 z%) is constructed in ths simply- 
connected domain bounded by r, J?a The required function ho agrees with ha1 in the 
ring-shaped domain bounded by ri, I? and agrees with ha2 -I- c in the simply-connec- 
ted domain bounded by the curves rs, rl. 

5. Survey of investigation8 on the torrion of rfgfd-plastic bars. 
The solution of the problem of torsion of rigid-plastic bars has been elucidated in many 
monographs, surveys, and reference texts on the theory of plasticity (see & 10 - 141, for 
instance, where references to the journal literature are also presented). The solution pro- 
posed in [l, lo- 141 for the torsion problem is the following. A special tensor field 
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‘%3 O = ah, I aq, 023” = --d&a I as, is considered, the remaining oip are zero, where 
hO (51, 2%) is such that ila IaD = c and I VI., I = k (51, zzcz) almost everywhere in D 
{only isotropic inhomogeneous media were considered) and a, yields the upper bound to 

the functional a (n) 
“-~t,GhdP(~iZ?+212)~~)-l, s~P@@)+Q,&) 

It is asserted that 0 (h,) is the limit moment. 

It has been shown in Sect. 1 of this paper that Q (h,) generally yields the lower bound 

of the limit moment. It is proved in Sect. 2 that 4~ &J) isthe limit moment. 
Another means of obtaining this result (this means is considered in the literaturecited 

and is realized in Sect. 3 of the paper) is to find the velocity field corresponding to the 
special stress field, which is equivalent to the solvability of the over-defined system 

(3.2) which has the form 

in the case under consideration. 

However, not this system but its corollary 

au aho au ah, -- ab J!&c,_~~ 
ax1 ax, +az,az, i-x 1 ax2 -----x2 ax, 

(5.1) 

(5.2) 

is later investigated in the literature cited above. It is clear that (5.2) is not equivalent 

to the system (5.1). 

The lack of equivalence can be detected in the simplest examples. Let D be a cir- 
cular concentric ring with inner radius r_ and outer radius r,. Then the general solution 

of (5.2) has the form u = c (S), where 8 is the polar angle with pole at the center of 
the ring and c fe) is an arbitrary function, At the same time, the general solution of the 

system (5. I) is 
u = 4-56 + k (e), k’ (8) > 0, k (24 - k (0) d r_‘2n 

Certainly,(S. 2) can be solved in specific problems and it will be seen by direct sub- 
stitution that the relations (5.1) are satisfied. It is apparently easy to perform such a 

confirmation when the solution of (5.2) is given in explicit form and is continuous. Such 
formulas for several simply-connected domains (a special kind of oval, equilateral tri- 

angle, rectangle, comer) in the case of a homogeneous isotropic medium are presented 
in [12]. The corresponding formula for the warping rate of the cross section of a rec- 
tangular cylinder for a special kind of inhomogeneous isotropic medium is contained in 

CKI. 
In the case of doubly-connected cross sections, the warping rate is generally a discon- 

tinuous ~nc~on, as has been shown in Sect. 3, and it is here impossible to replace the 
investigation of the system (5.1) by an investigation of (5.2). Moreover, the question of 
the uniqueness of the solution remained open in the previous exposition of the problem. 

Let us note that (3.12) for the warping rate has not been known before even in the case 
of a homogeneous, isotropic rigid-plastic medium. 
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